

A Primer in

Fuzzy Markup Language

ver. 0.1.1

Giovanni Acampora

1

Autilia Vitiello
2

1
School of Science and Technology,

Nottingham Trent University,

Nottingham NG11 8NS, UK
2
Department of Mathematics and Computer Science

University of Salerno

Fisciano, 84084, Italy

Introduction

Fuzzy control theory can be considered as the most widely used application of fuzzy logic. From a

high level point of view, a Fuzzy Logic Controller (FLC) is an adequate methodology for designing

and developing controllers capable of supplying high quality performance in environments

characterized by high level of uncertainty and imprecision. Moreover, FLCs lets controller

designers to describe complex systems using their knowledge and experience by means of linguistic

IF-THEN rules. It does not require any system modeling or complex math equations governing the

relationship between inputs and outputs as it happens for others controller design methodologies

(e.g. PID). FLC typically takes only a few rules to describe systems that may require several of

lines of conventional software. As a result, fuzzy logic significantly simplifies controller design

complexity. However, in spite of these unquestionable advantages, the real design of FLCs is

strongly depends upon hardware architecture which will implement the running version of designed

controller. For this reason, a new version of FLCs implementation allowing the designer to model

the controllers in hardware independent way has been considered.

This novel vision of FLCs is based on the labeled tree idea, a data structure defined by means of the

well-know graph theory. Because the labeled trees are data models derived by the XML-based

document representation, each fuzzy controller is representable by means of XML, the main

technology for data abstraction. So, the development of a new XML-based language able to model a

fuzzy controller enable designers to represent controllers in a human-readable and hardware

independent way. This new language is named Fuzzy Markup Language (FML).

FML is essentially composed by three layers:

1) XML in order to create a new markup language for fuzzy logic control;

2) a document type definition (DTD), initially, and now a XML Schema in order to define the

legal building blocks; and

3) extensible stylesheet language transformations (XSLT) in order to convert a fuzzy controller

description into a specific programming language.

In order to model a fuzzy system by means of XML it is necessary to analyzed a controller by a

structural point of view. The high-level structure of fuzzy controller is shown in Fig. 1.

The main components of fuzzy controller are:

 • fuzzy knowledge base;

 • fuzzy rule base;

 • inference engine

 • fuzzification subsystem;

 • defuzzification subsystem.

Fig. 1: Generic fuzzy control

The fuzzy knowledge base manipulates the variables used in the controlled system (such as

temperature, pressure, etc.), corresponding to the knowledge used by human experts. The Fuzzy

Rule Base represents the set of relations between fuzzy variable defined in the controller system.

The Inference Engine is the fuzzy controller component able to extract new knowledge from fuzzy

knowledge base and fuzzy rule base. Moreover, the controlled system works with real numbers,

whereas the fuzzy controller system works with fuzzy concepts. The two subsystems, the

fuzzification subsystem and the defuzzification subsystem, are necessary to bridge controlled

systems with controller systems. The former permits to transform the real numbers used by

controlled systems into a fuzzy set used by fuzzy controller. The latter transforms the fuzzy set

generated by fuzzy controller into real numbers usable by controlled system. The nature of

consequent part of fuzzy rules permits to define two kind of fuzzy controller: the Mamdani

controller and the Takagi-Sugeno-Kang (TSK) controller. The Mamdani controller uses a fuzzy set

to model the consequent part of rule, whereas the TSK controller uses the linear function of input

variable to describe the rule consequent part. FML permits to model both fuzzy controllers. For

sake of simplicity, and to better introduce the operating concepts, the discussion is focused on a

Mamdani fuzzy controller. Then, we will describe also a Takagi-Sugeno-Kang system to show how

FML manages this kind of controller. The described system is useful to regulate the tipping in, for

example, a restaurant. It has got two variables in input (food and service) and one in output (tip).

However, FML uses an alternative representation of fuzzy controller in order to derive an XML-

based model. This representation is based on the notion of the labeled tree (Fig. 2). Each node in

fuzzy controller tree will represent an XML tag, and the father-child relation represents a nested

relation between related tags.

Fig. 2: Fuzzy controller tree

Starting from Fig. 2 it is simple to individuate the collection of XML tags capable of modeling a

fuzzy controller. In detail, the controller node can be modeled by means of a tag named

<FUZZYCONTROLLER>. Such tag represents the root tag of FML program, that is, the opening

tag of each FML program. <FUZZYCONTROLLER> has two attributes: name and ip. The name

attribute permits to specify the name of fuzzy controller and ip is used to define the location of

controller in the computer network. Considering the fuzzy left subtree the knowledge base

component is encountered. The fuzzy knowledge base is defined by means of the tag

<KNOWLEDGEBASE> which maintains the set of fuzzy concepts used to model the fuzzy rule

base. The <KNOWLEDGEBASE> uses the attribute ip that determines the location in the network

of whole fuzzy knowledge base of our system.

In order to define the fuzzy concept related controlled system, <KNOWLEDGEBASE>

tag uses a set of nested tags:

• <FUZZYVARIABLE> defines the fuzzy concept, for example, “food”;

• <FUZZYTERM> defines a linguistic term describing the fuzzy concept, for example, “rancid

food”;

• a set of tags defining a shape of fuzzy sets are related to fuzzy terms.

The attributes of <FUZZYVARIABLE> tag are: name, scale, domainLeft, domainRight, type and,

for only an output, accumulation, defuzzifier and defaultValue. The name attribute defines the name

of fuzzy concept, for instance, food; scale is used to define the scale used to measure the fuzzy

concept, for instance, Celsius degree, instead, in the our case, for variable food it can be set to null;

domainLeft and domainRight are used to model the universe of discourse of fuzzy concept, that is,

the set of real values related to fuzzy concept, for instance [0°,40°] in the case of Celsius degree or

[0,10] for variable food to indicate that food can be judge with a value from 0 to 10; the position of

fuzzy concept into rule (consequent part or antecedent part) is defined by type attribute

(input/output); accumulation attribute defines the method of accumulation that is a method that

permits the combination of results of a variable of each rule in a final result; defuzzifier attribute

defines the method used to execute the conversion from a fuzzy set, obtained after aggregation

Fuzzy

Terms

Fuzzy

Terms

Fuzzy

Terms

 Tip

 Food

Knowledge base

 Service

Antecedent &

Consequent

Antecedent &

Consequent

Antecedent &

Consequent

IF…THEN Tip is generouse

 IF…THEN Tip is average

IF…THEN Tip is cheap

 Rule base

 Controller

process, into a numerical value to give it in output to system; defaultValue attribute defines a real

value used only when no rule has fired for the variable at issue.

<FUZZYTERM> uses two attributes: name used to identify the linguistic value associate with

fuzzy concept and complement, a boolean attribute that defines, if it is true, it is necessary to

consider the complement of membership function defined by given parameters.

Fuzzy shape tags, used to complete the definition of fuzzy concept, are:

<TRIANGULARSHAPE>

<RIGHTLINEARSHAPE>

<LEFTLINEARSHAPE>

<PISHAPE>

<GAUSSIANSHAPE>

<RIGHTGAUSSIANSHAPE>

<LEFTGAUSSIANSHAPE>

<TRAPEZOIDSHAPE>

<SSHAPE>

<ZSHAPE>

<RECTANGULARSHAPE>

<SINGLETONSHAPE>

Every shaping tag uses a set of attributes which defines the real outline of corresponding fuzzy set.

The number of these attributes depends on the chosen fuzzy set shape. Considering as example, the

“food” as input variable and “tip” as output one in defining our fuzzy control, the knowledge base,

and in particular the quality of food can be modeled as follows:

<?xml version="1.0" encoding="UTF-8"?>

<FuzzyController name="newSystem" ip="127.0.0.1">

 <KnowledgeBase>

 <FuzzyVariable name="food" domainleft="0.0" domainright="10.0" scale=""

 type="input">

 <FuzzyTerm name="delicius" complement="false">

 <LeftLinearShape Param1="5.5" Param2="10.0"/>

 </FuzzyTerm>

 <FuzzyTerm name="rancid" complement="false">

 <TriangularShape Param1="0.0" Param2="2.0" Param3="5.5"/>

 </FuzzyTerm>

 </FuzzyVariable>

 …

 <FuzzyVariable name="tip" domainleft="0.0" domainright="20.0"

 scale="Euro" defaultValue="0.0" defuzzifier="COG"

 accumulation="MAX" type="output">

 <FuzzyTerm name="average" complement="false">

 <TriangularShape Param1="5.0" Param2="10.0" Param3="15.0"/>

 </FuzzyTerm>

 <FuzzyTerm name="cheap" complement="false">

 <TriangularShape Param1="0.0" Param2="5.0" Param3="10.0"/>

 </FuzzyTerm>

 <FuzzyTerm name="generouse" complement="false">

 <TriangularShape Param1="10.0" Param2="15.0" Param3="20.0"/>

 </FuzzyTerm>

 </FuzzyVariable>

 <KnowledgeBase>

 ...

</FuzzyController>

A special tag that can furthermore be used to define a fuzzy shape is <USERSHAPE>. This tag is

used to customize fuzzy shape (custom shape). The custom shape modeling is performed via a set

of <POINT> tags that lists the extreme points of geometric area defining the custom fuzzy shape.

Obviously, the attributes used in <POINT> tag are x and y coordinates.

The fuzzy right subtree is used to define the rule base set. Indeed, it is possible to define more rule

bases to describe the different behaviors of system. The root of this rule base is modeled by

<RULEBASE> tag which defines a fuzzy rule set. The <RULEBASE> tag uses five attributes:

name, type, activationMethod, andMethod and orMethod. Obviously, the name attribute uniquely

identifies the rule base. The type attribute permits to specify the kind of fuzzy controller (Mamdani

or TSK) respect to the rule base at issue. The activationMethod attribute defines the method used to

implication process; the andMethod and orMethod attribute define, respectively, the and and or

algorithm to use by default. In order to define the single rule the <RULE> tag is used. The

attributes used by the <RULE> tag are: name, connector, operator and weight. The name attribute

permits to identify the rule; connector is used to define the logical operator used to connect the

different clauses in antecedent part (and/or); operator defines the algorithm to use for chosen

connector; weight defines the importance of rule during inference engine time. The definition of

antecedent and consequent rule part is obtained by using <ANTECEDENT> and

<CONSEQUENT> tags. <CLAUSE> tag is used to model the fuzzy clauses in antecedent and

consequent part. This tag use the attribute modifier to describe a modification to term used in the

clause. The possible values for this attribute are: above, below, extremely, intensify, more or less,

norm, not, plus, slightly, somewhat, very, none. To complete the definition of fuzzy clause the

nested <VARIABLE> and <TERM> tag have to be used. A sequence of <RULE> tags realizes a

fuzzy rule base.

As example, let us consider a Mamdani rule composed by (food is rancid) OR (service is very

poor) as antecedent and tip is cheap as consequent. The antecedent part is formed by two clauses:

(food is rancid) and (service is poor). The first antecedent clause uses food as variable and rancid as

fuzzy term, whereas, the second antecedent clause uses service as a variable, poor as fuzzy term and

very as modifier; the consequent clause uses tip as a fuzzy variable and cheap as a fuzzy term. The

complete rule is:

IF (food is rancid) OR (service is very poor) THEN (tip is cheap).

Let us see how fml language define a rule base with this rule.

<RuleBase name="Rulebase1" activationMethod="MIN" andMethod="MIN" orMethod="MAX"

 type="mamdani">

<Rule name="reg1" connector="or" operator="MAX" weight="1.0">

 <Antecedent>

 <Clause>

 <Variable>food</Variable>

 <Term>rancid</Term>

 </Clause>

 <Clause modifier="very">

 <Variable>service</Variable>

 <Term>poor</Term>

 </Clause>

 </Antecedent>

 <Consequent>

 <Clause>

 <Variable>tip</Variable>

 <Term>cheap</Term>

 </Clause>

 </Consequent>

 </Rule>

 …

</RuleBase>

Now, let us see a Takagi-Sugeno-Kang system that regulates the same issue.

The most important difference with Mamdani system is the definition of a different output variable

“tip”. The <TSKVARIABLE> tag is used to define an output variable that can be used in a rule of a

Tsk system. This tag has the same attributes of a mamdani output variable except for the domainleft

and domainright attribute because a variable of this kind (called tsk-variable) hasn’t a universe of

discourse. The nested <TSKTERM> tag represents a linear function and so it is completely

different from <FUZZYTERM>. The <TSKVALUE> tag is used to define the coefficients of linear

function.

The following crunch of fml code shows the definition of output variable “tip” in a Tsk system.

<?xml version="1.0" encoding="UTF-8"?>

<FuzzyController name="newSystem" ip="127.0.0.1">

 <KnowledgeBase>

 …

 …

 <TSKVariable name="tip" scale="null" accumulation="MAX" defuzzifier="WA"

 type="output">

<TSKTerm name="average" order="0">

 <TSKValue>1.6</TSKValue>

 </TSKTerm>

 <TSKTerm name="cheap" order="1">

 <TSKValue>1.9</TSKValue>

 <TSKValue>5.6</TSKValue>

 <TSKValue>6.0</TSKValue>

 </TSKTerm>

 <TSKTerm name="generouse" order="1">

 <TSKValue>0.6</TSKValue>

 <TSKValue>1.3</TSKValue>

 <TSKValue>1.0</TSKValue>

 </TSKTerm>

 </TSKVariable>

 <KnowledgeBase>

 ...

</FuzzyController>

The fml definition of rule base component in a Tsk system doesn’t change a lot. The only different

thing is that the <CLAUSE> tag doesn’t have the modifier attribute.

As example, let us consider a tsk rule composed by (food is rancid) OR (service is very poor) as

antecedent and, as consequent, tip=1.9+5.6*food+6.0*service that can be written as tip is cheap in

an implicitly way. So the rule can be written in this way:

IF (food is rancid) OR (service is very poor) THEN (tip is cheap).

Let us see how fml language define a rule base with this rule.

<RuleBase name="Rulebase1" activationMethod="MIN" andMethod="MIN" orMethod="MAX"

 type="tsk">

<Rule name="reg1" connector="or" operator="MAX" weight="1.0">

 <Antecedent>

 <Clause>

 <Variable>food</Variable>

 <Term>rancid</Term>

 </Clause>

 <Clause>

 <Variable>service</Variable>

 <Term>poor</Term>

 </Clause>

 </Antecedent>

 <Consequent>

 <Clause>

 <Variable>tip</Variable>

 <Term>cheap</Term>

 </Clause>

 </Consequent>

 </Rule>

 …

</RuleBase>

FML has been designed to be simply embedded into distributed artificial intelligence environment

and, for this reason, some tags use an additional, not fuzzy logic oriented, attribute exploited to

move the different components of a controller on different computational hosts in order to achieve a

massive parallelization during fuzzy inference. The additional attribute is named ip and it is used by

the following tags: <KNOWLEDGEBASE>, <FUZZYVARIABLE>, <RULEBASE> and

<RULE>.

An Overview of VisualFMLTool 0.1.1

VisualFMLTool is a development environment for fuzzy-inference-based systems. Its

functionalities cover the different stages of the fuzzy system design process, from their initial

description to the final implementation. It admits to designing both Mamdani and Takagi-Sugeno-

Kang systems. It allows to develop complex systems and above all to manage more ones in the

same time. The environment has been completely programmed in Java, so it can be executed on any

platform with JRE (Java Runtime Environment) installed.

The main functionalities the tool provides are the following ones:

- Fuzzy system description: the tool allows to define the system creating linguistic variables

and rules. Above all, the rules can be organized in rule bases, each one describes a particular

system behavior;

- Verification: the tool allows to monitor the system behavior showing outputs corresponding

to different inserted inputs and also it allows to represent graphically the system behavior

showing the control surface;

- Tuning: the tool allows to apply algorithms based on neural network and not only ones to

execute the learning stage and specifically to modify membership functions using a

training data file (under development);

- Synthesis: the tool allows to generate high-level languages descriptions even if at the

moment it provides only java implementation (under development).

VisualFMLTool defines the system structure using FML (Fuzzy mark-up language) as specification

language. Indeed it is possible to import a fml file to build a fuzzy controller, and also to export a

system created by the tool in a fml file.

Installation of VisualFMLTool 0.1.1

VisualFMLTool can be executed on platforms containing the Java Runtime Environment. The Java

Software Development Kit, including JRE, compiler and many other tools can be found at

http://java.sun.com/j2se/.

To install VisualFMLTool is needed to download the visualFMLTool.zip from web site

http://www.di.unisa.it/dottorandi/avitiello/FML/VisualFMLTool-0.1.1.zip and to extract it. Then it

is only needed to click the file visualFMLTool.bat included in the zip to execute the tool.

http://java.sun.com/j2se/
http://www.di.unisa.it/dottorandi/avitiello/tools.html/FML/VisualFMLTool

VisualFMLTool: description

The next figure shows the main window of VisualFMLTool.

Fig. 3: Initial Frame

The menu bar in the main window permits to execute all the functionalities; instead the toolbar

under it contains only the most used options. Under the toolbar there is a field to view the project

name, this field is not editable. The name of the project under development can be changed by the

“Save Project As” option. The central zone is divided into three parts. The left and the right parts

contain five lists: two ones on the left side that show input and output variables of system and three

ones on the right side that show, beginning from top, the systems loaded or created by tool, types of

variables, the rule bases. In the central area you can switch from a “Tree view” that shows a graph

representing the structure of system according to fml specifications, to a “FML view” that shows

fml code or to a “Type view” that shows a graph for each root type representing the hierarchy of

root type. At the bottom, the “Tree view” and “Type view” has got two buttons “+” and “-” to zoom

graphs and a pulldown list with two item “Transforming” and “Picking”. The first one permits to

move the whole graph on the view area, instead, the second one admits to moving each node of

graph on the view area. The File menu allows to create, load, save and close a project, that can

contain one or more systems. The menu ends with the option to exit the environment. The Edit

menu allows to create, load, save, delete a fuzzy system, import a file fml to build automatically a

system, export the current system in a file fml or the graph as a png file, and finally to switch from a

system to another. The Edit System menu allows to edit the current system, that is the system

selected in system list shown on the right side. The possible actions are creating, modifying and

deleting a variable or a type or a rule base of system. The Verification menu allows to represent the

system behavior on a 3-dimensional plot and monitoring the system. The Tuning menu allows to

start learning algorithms (under development). The Synthesis menu allows the software synthesis,

that generates system description in Java (under development). The Set Up menu is used to modify

the environment changing its the look and feel. Many options on the menu bar are only enabled

when a fuzzy system is selected.

Fuzzy System Description

VisualFMLTool offers a graphical interface to ease the description of fuzzy systems, avoiding the

need for an in depth knowledge of the FML language. This stage of fuzzy process is covered by

actions of “Edit” and “Edit System” menus. Besides a lot of these actions are admitted also by

means of popups shown clicking the lists on the left and right side using the right button of mouse

or clicking on a graph node in the “Tree view” area.

The first step in the description of a fuzzy system is creating input and output linguistic variables,

by means of the Variable Editor window shown below.

Fig. 4: Variable Editor - input variable Fig. 5: Variable Editor - output variable

A new variable needs the introduction of its name, its scale and its sign (input/output). The

defuzzification method, the accumulation one and the default value are necessary only for output

variables and so they are disabled for an input variable. Besides each variable must have a type, so

you can create it beginning from this window clicking “New Type” or before creating the variable

clicking on “New Type” from menu “Edit System” or from popup shown when you click on type

list. The tool manages two kind of types: one that we call simply type that can be associated to an

input variable of a Mamdani or Takagi-Sugeno-Kang system and to an output variable only of a

Mamdani system and another, that we call tsk-type, that can be associated only to an output variable

of a Takagi-Sugeno-Kang system. We use the word type not in italics to refer a type in a generic

way; that is to refer both types.

Once a variable has been created it can be modified in all attributes except for its sign. To modify a

variable you can select it on input or output list and then double click or you can click right button

of mouse on the same lists and select the item “Modify variable” on popup shown or finally you can

modify a variable by means of popup shown clicking on a variable node of graph. The functionality

“Delete variable” is reachable in the same way.

 The fig.6 shows the window to create a type, whereas the fig.10 shows that one to create a tsk-type.

Fig. 6: Type Creation

A new type needs the introduction of its identifier, universe of discourse (domain left and domain

right) and an initial number of terms (it can be modified adding or deleting a term by means of

option “Modify” in “Edit System” menu or in popup). The window includes several predefined

functions corresponding to the most usual partitions of the universes. These predefined functions

contain triangular, trapezoidal, rectangular, singleton, gaussian and linear partitions. Besides they

include the “User shape” option, which admits to defining a custom function inserting all points of

membership function. Finally, the “EXTENDS” option admits the extension of an existing type

(selected in the Parent field). This concept (extension of a type) isn’t implemented in the FML

language, but it is provided by tool to make fuzzy design more flexible. The rules of extension of a

type are:

- The child-type inherits automatically the universe of discourse and the terms of its parent.

- The child-type can add a term or overwrite a term of parent.

- The child-type can’t delete a term that belongs to its parent without causing the cancellation

of term also in its parent.

The modifications between a child-type and a parent-type can be noticed also by means of a tooltip

shown when the mouse is on an edge of graph of a root type.

The next figure shows an example.

Fig. 7: Type hierarchy

Once a type has been created, it can be edited using the Type Editor window shown below.

Fig. 8: Type Editor

This window allows the modification of the type name and universe of discourse. Besides it admits

to adding, editing and removing the membership functions(terms) of the edited type. The window

shows a graphical representation of the membership functions, where the selected membership

function is represented in a different color (red). The bottom of the window presents a command bar

with the usual buttons to save or reject the last changes, and to refresh modifications before saving

them. Besides the “Export chart” button allows to save the graphical representation as a jpeg file. It

is worth considering that the modifications on the definition of the universe of discourse can affect

the membership functions already defined. Hence, a validation of the membership function

parameters is done before saving the modifications, and if a membership function definition

becomes invalid it is updated in a default way (it is preferable to view only an error message). A

membership function can be created or deleted with buttons under terms list and edited with double

click on the terms list.

Fig. 9: Term Editor

The previous figure shows the window to edit a membership function (term). The window has

fields to introduce the name, to select the kind of membership function, and to introduce the

parameter values. The right side of the window shows a graphical representation of membership

function. The bottom of the window shows a command bar with four options: Set, to close the

window saving the changes, Refresh, to repaint the graphical representation, Export chart, to save

the graphical representation as a jpeg file, and Cancel, to close the window without saving the

modifications.

Fig. 10: Tsk-type Editor

A tsk-type needs the introduction of a name and it has an only term by default. Then you can add,

edit or delete a term. Each term has an only value by default, but then you can add, edit or delete

one. A tsk-variable hasn’t got a universe of discourse. A tsk-type can’t be extended. All tsk-types

are shown in an only graph.

To modify a type you can select it on type list and then double click or you can click right button of

mouse on the same list and select the item “Modify type”. The functionality “Delete type” is

reachable in the same way. When you modify a type, automatically you modify all variables

associated to it. When you delete a type that is already associated to a variable you delete

automatically also the variable. If you don't want to delete the variable you must associate to it

another type before deleting the associated type.

The next step in the definition of a fuzzy system is to describe the rule bases expressing the

relationship among the system variables. Rule bases can be created, edited and removed from their

list by means of a popup or from “Edit System” menu. The “New Rulebase” window is used to

create a rule base.

Fig. 11: New Rulebase

A rule base needs the introduction of a name, an activation method, a type (Mamdani/Tsk), an

operator by default for “and connector” and “or connector”. When you click on “Create” button,

according to type of rule base, you view the window “Rulebase Editor” (fig.12) or “TskRulebase

Editor” (fig.13). Both windows try to ease the rule base design.

Fig. 12: Rulebase Editor

The previous window is divided into four zones: at the top there are the fields to introduce the name

of the rule base and the activation method; the central zone is dedicated to showing the contents of

the rules included in the rule base; under rules list there are all components necessary to build a new

rule and the bottom part of the window contains the command bar with the usual buttons to save or

reject the modifications. The current rule is the only rule with red color. When the current rule is

built you can add it to the rule base by means of button “Add Rule”. Each rule can be modified or

deleted using buttons “Modify Rule” and “Delete Rule” after selecting it. In order to generate all

possible rules you can use the bottom “Generate All Rules”, instead, if you want to delete all rules

you can use the bottom “Delete All Rules”. The output variables that can be selected in the

consequent part are only variables associated with a type, instead, they are variables associated with

a tsk-type when you are building a tsk-rule base.

The next figure shows a “TskRulebase Editor”. The window structure of “TskRulebase Editor” and

“Rulebase Editor” is almost the same except that, in a tsk-rule base, the consequent part can’t have

got a modifier. It is worth marking as a tsk-rule is written, that is you explicitly can see the linear

function associated to an output variable.

Fig. 13: TskRulebase Editor

Systems Verification

The verification stage in the fuzzy system design process consists in studying the behavior of the

fuzzy system under development. The aim of this stage is the detection of probable deviations on

the expected behavior and the identification of the sources of these deviations.

VisualFMLTool 0.1 environment covers the verification stage with two functionalities. The first

one is “Run” that shows results of fuzzy inference process. The second one is “Surface 3D Plot”

that implements a three-dimensional graphical representation of the system behavior.

The aim of the “Run” functionality is to monitor the fuzzy inference process in the system, to show

graphically the values of the different output variables for a given set of input values.

Fig. 14: Rulebase viewer

The previous figure shows the “Rulebase viewer” window. The window title contains the name of

rule base and the activation method. Each rule is a row of plots, and each column is a variable. Each

plot has a name that represents the terms of variables that build the rule. Notice that when there is a

plot which is blank, this corresponds to the characterization of none of terms for that variable in that

rule. The rule names are displayed on the left of each row. The real number under rule name

represents the weight of rule. You can click on a rule name to view the rule on the bottom, whereas

the tooltip, shown when mouse is on the rule name, informs about connector method of rule. The

fourth plot in the column of plots associated with an output variable represents the aggregate

weighted decision for the given inference system. This decision will depend on the input values for

the system. The initial input value for an input variable is the minimum value of its universe of

discourse. The variables and their current values are displayed on top of the columns. For input

variables there is a spinner to insert input value to fuzzy inference process, whereas for output ones

there is a not editable field to display the value that results from process. With name of output

variable is shown also the defuzzification method of variable, whereas the tooltip, shown when

mouse is on name of output variables, informs also about accumulation method.

Fig. 15: Control surface

The previous figure shows the “Surface Viewer”. The graphical 3-dimensional representation

illustrates the behavior of a fuzzy system, a surface plot showing an output variable as a function of

two input variables. Hence, the system to be represented must contain at least two input variables

and an output one. If the system contains more than two input variables, the not selected ones have

to be specified by the user. The window is divided into two parts: the left one is dedicated to

configuring the graphical representation, while the right part of the window is occupied by the

surface plot. The configuration zone is formed by three pulldown lists which allow the selection of

the variables assigned to each axis and a set of fields dedicated to introducing the fixed values of the

not selected input variables. The field, named “Points”, contains the number of points used in the

partition of the X and Y axis. This is an important parameter because it determines the

representation resolution. A low value in this parameter can exclude important details of the system

behavior. On the other hand, a high value will make it difficult to understand the represented

surface, as it will use a very dense grid. The default value of this parameter is 10, the minimum one

is 5 and maximum one is 100. The bottom of the window shows a command bar with three options:

“Create Plot”, to actualize the graphical representation with the present configuration, “Close”, to

exit, and “Save”, to save the current surface in order to compare it with a new surface obtained from

a different set of values given to not selected variables or from modifications to the rule base.

However, the comparison is possible between surface created using the same input variables on X

and Y axis and output one on Z axis.

Fig. 16: Comparison of surfaces

In the previous figure it is shown a comparison between a current surface built with the variable

building set to 6, and the surface, named “building-9” when it was saved, built with the variable

building set to 9.

By means of toolbar shown at the top of graphical representation it is possible rotating the surface,

zooming, saving it as a png file, and showing all the points of surface. When two surfaces are

compared and they have got the same number of points, you can calculate error between them, too.

Fig. 17: Error calculation

The previous window shows the calculated error. The field with label “Error” contains the error

calculated by means of MSE (Mean Squared error) function. Instead RMSE value indicates the

square root of MSE and finally MxAE value indicates the max absolute value of error.

Systems Tuning (under development)

Although the usual approach to design a simple fuzzy system is to translate the knowledge of a

human expert expressed linguistically, problems can appear because the way to implement the

translation is not unique and/or the knowledge is not always available or possible to realize. This I

why many researches have worked and are still working on applying automatic tuning techniques to

fuzzy systems. If the tuning is applied only to the membership functions representing the

antecedents and consequents of the rules, the fuzzy system is usually called a self-tuning system. In

a more general case, if the rule base Isi also tuned, the system is usually called a self-organizing

fuzzy system. The tuning techniques that have been used to adjust a fuzzy system can be grouped

into the following categories: (a) meta-level heuristic rules, which implement the knowledge of an

expert on tuning the system; (b) supervised and non-supervised algorithms taken from the neural

network domain, which require a set of numerical training data; (c) reinforcement learning, which is

applied when the only feedback about the system performance is a reward/punishment signal; and

(d) genetic algorithms, which try to improve the system performance according to a set of

objectives included within adequate fitness function. When input/output training data are available,

supervised learning algorithms usually provide the best results for tuning a fuzzy system. For this

reason they are the algorithms we have considered to implement the functionality “Tuning” of

Visual FML Tool. The fig. 18 shows the window “Supervised Learning” which is used to configure

and to execute the learning process.

Fig. 18:Window Supervised Learning

The window is divided into two parts: at the top the area is dedicated to insert data to configure the

learning process, whereas at the bottom the area is used to execute it. The first step in the

configuration is to select a training file which contains the input/output data of the desired behavior.

Besides you can select also a test file, written as the training file, used to check the generalization of

the learning, and a log file to save the learning evolution in an external file. The following steps are

selecting the learning algorithm and the error function (which measures the deviation of the fuzzy

system behavior from the desired input/output pattern set). The tool makes available the following

algorithms: BackPropagation[14] e Conjugate Gradient[21] belonging to gradient descent

algorithms. However, the gradient of the error function cannot always be calculated because it can

be too costly or not defined. In this case, optimization algorithms without derivatives can be

employed. Regarding this category of algorithms, the tool offer Powell’s method. This kind of

algorithms is much slower than the previous ones. At the end, the tool makes available a statistical

algorithm: Blind Search which may provide good results when the number of parameters is low.

Regarding the error functions, the tool offer only two ones: considering N as the number of data

patterns, M as the number of output variables in the system, as the output generated by

system for the pattern, as the correct output value written on training file, and as range of

the output variable, we have:

 Mean square error (MSE):

 Mean absolute error (MAE):

An important feature of learning process offered by tool is to simplify the tuning process before

(preprocessing) or after (postprocessing) it. One of the simplifications consists in detecting and

deleting those rules that are never activated sufficiently by any of the training input/output patterns.

The last configuration step is to select the end to select the end condition to finish the learning

process. This condition can be a limit imposed over the number of iterations, the maximum error

goal, or the maximum absolute or relative deviation (considering either the training or the test

error).

Systems Synthesis (under development)

The main aim of system synthesis is to generate a system representation that could be computed on

different hardware and software environments. In details, this step enables to translate an FML

representation of a controller into two different types of implementation models: software

representations and hardware representations. The software synthesis generates a system

representation in a high level programming language. The hardware synthesis generates a

microelectronic circuit that implements the inference process described by the fuzzy system.

Currently, VisualFMLTool provides only software synthesis and only for Java language. The

synthesis is implemented thanks to Extensible Stylesheet Language Transformations (XSLTs)

modules. Indeed, XSLT is able to convert the FML fuzzy controller in a general purpose computer

language using an XSL file containing the translation description. So, VisualFMLTool executes

synthesis in Java language thanks to a defined XSL file. Therefore, when you click on “To Java”

from menu “Synthesis”, a simple dialog window opens to select a directory in which saving Java

classes generated from tool in automatic way by means the file xslt.

